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Abstract: Spectral clustering is one of the most important algorithms in data mining and machine intelligence; 

however, its computational complexity limits its application to truly large scale data analysis. However, ensample 

clustering suffers from a scalability problem in both memory use and computational time when the size of a data set is 

large. The proposed system introduced are three: (a) The local scale, rather than a global one, (b) estimating the scale 

value of the data, and (c) weighted based eigenvectors value rotating to create the maximally sparse representation. The 

proposed an automated spectral clustering algorithm based on these ideas: it computes automatically the large data and 

the number of groups and it can handle multi-scale data which are difficult for previous ensample approaches. 

Experimental results on multiple real-world image datasets demonstrate the effectiveness and efficiency of our 

approach. In particular, given a cluster, investigate its uncertainty by considering how the objects inside this cluster are 

grouped in the multiple base clustering‟s. Based on cluster uncertainty estimation, a spectral cluster index (SCI) is then 
presented to measure the reliability of clusters. The proposed algorithm the crowd of diverse clusters in the spectral can 

provide an effective indication for evaluating each individual cluster in the subspace. By evaluating and weighting the 

clusters in the spectral via the SCI measure, the present the concept of locally weighted co-association matrix, which 

incorporates local adaptively into the conventional co-association matrix and serves as a summary for the spectral of 

diverse clusters. Finally, to achieve the final clustering result, propose novel locally weighted Ng-Jordan-Weiss 

(WNJW) Algorithm, respectively, with the diversity of clusters exploited and the local weighting strategy incorporated. 

 

Keywords: Locally Weighted Spectral Cluster, matrix, Local Scaling, Estimating Weight based Clusters. 

 

I. INTRODUCTION 

 
The spectral methods recently emerge as effective 

methods for data clustering, image segmentation, Web 

ranking analysis and dimension reduction. They start with 

well-motivated objective functions; optimization 

eventually leads to eigenvectors, with many clear and 

interesting algebraic properties. At the core of spectral 

clustering is the Laplacian of the graph adjacency 

(pairwise similarity) matrix, evolved from spectral graph 

partitioning. This tutorial provides a survey of recent 

advances after brief historical developments.  
 

Mathematical proofs will be outlined and examples in 

gene expressions and internet newsgroups will give to 

illustrate the ideas and results. Traditional clustering 

algorithms, such as k-means, GM EM, etc, while simple, 

most of them are based on convex spherical sample space, 

and their ability for dealing with complex cluster structure 

is poor. When the sample space is not convex, these 

algorithms may be trapped in a local optimum.  The 
spectral clustering algorithm has been proposed to solve 

this issue. Spectral clustering algorithm is based on spectra 

graph theory that partition data using eigenvectors of an 

affinity matrix derived from the data. It can cluster 

arbitrarily shaped data. In recent years, spectral clustering 

has been successfully applied to a large number of 

challenging clustering applications. It is simple to 

implement, can be solved efficiently by standard linear  

 

 
algebra software, and often outperforms traditional 

clustering algorithms such as the k-means algorithm. 
 

Clustering is one of the building blocks of modern data 

analysis. Two commonly used methods are K-means and 

learning a mixture-model using EM. These methods, 

which are based on estimating explicit models of the data, 
provide high quality results when the data is organized 

according to the assumed models. However, when it is 

arranged in more complex and unknown shapes, these 

methods tend to fail. An alternative clustering approach, 

which was shown to handle such structured data is spectral 

clustering. It does not require estimating an explicit model 

of data distribution, rather a spectral analysis of the matrix 

of point-to-point similarities. 

Although spectral clustering algorithms have shown good 

results in various applications, it relies on the dataset 

where each cluster is approximately well separated to a 

certain extent. The spectral clustering algorithm will fail to 
recognize one cluster as different clusters when the cluster 

has an obvious inflection point within a non-convex space. 

The reason is that the constructed affinity matrix, which 

the spectral clustering heavily relies on, will be corrupted 

with poor pairwise affinity values from the area of 

inflection points. Especially for most of the recent spectral 

clustering algorithms that use the traditional central 

grouping techniques to cluster the affinity matrix, e.g., k-
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means, it will amplify the misguidance of clustering 

because these centralized algorithms that are based on a 

radius distance between two data points cannot separate 

clusters that are very long or nonlinearly separable. 
 

Weighted Spectral Cluster approach based on cluster 

uncertainty estimation and local weighting strategy. In 

particular, the uncertainty of each cluster is estimated by 

considering the cluster labels in the entire ensemble via an 

entropic criterion. A novel spectral-driven cluster validity 
measure is introduced, and a locally weighted co-

association matrix is presented to serve as a summary for 

the ensemble of diverse clusters. With the local diversity 

in spectral exploited, two novel consensus functions are 

further proposed. Extensive experiments on a variety of 

real-world datasets demonstrate the superiority of the 

proposed approach over the state-of-the-art. Here use a 

number of higher-dimensional synthetic datasets to show 

that the weight based spectral clustering procedure can 

eliminate the misleading information from different kinds 

of datasets so the obtained spectral method could cluster 
the dataset more accurately. 

 

II. RELATED WORK 

 

The pair-wise similarity based approaches represent the 

ensemble information by some pair-wise similarity 

measure. The evidence accumulation clustering (EAC) 

proposed is probably the best known pair-wise similarity 

based approach. In EAC, a co-association matrix is 

constructed by counting how many times two objects 

occur in the same cluster in the ensemble of multiple base 
clustering‟s. By treating the CA matrix as a new similarity 

matrix, clustering algorithms, such as the agglomerative 

clustering methods, can be further utilized to obtain the 

consensus clustering. Proposed a hierarchical clustering 

algorithm to construct the consensus clustering using the 

CA matrix. The concept of normalized edges is introduced 

to measure the similarity between clusters. 
 

The median partition based approaches aim to find a 

clustering (or partition) that maximizes the similarity 
between this clustering and all of the base clustering‟s, 

which can be viewed as finding the median point of the 

base clustering‟s. Due to the huge space of all possible 

clustering‟s, it is generally infeasible to find the optimal 

solution for the median partition problem. In fact, the 

median partition problem is NP-complete. The existing 

algorithm to find an approximatively solution for the 

ensemble clustering problem by exploiting the genetic 

algorithm, in which clustering‟s are represented as 

chromosomes. To formulate the median partition problem 

into a maximum likelihood problem and solved it by the 
EM algorithm. 
 

The graph partitioning based approaches are another main 

category of ensemble clustering. The exiting method 

formulated the ensemble clustering problem into a graph 

partitioning problem and proposed three ensemble 

clustering approaches: cluster-based similarity partitioning 

algorithm (CSPA), hypergraph partitioning algorithm 

(HGPA), and meta-clustering algorithm (MCLA). The 

clustering ensemble into a bipartite graph by treating both 

clusters and objects as graph nodes and obtained the 

consensus clustering by partitioning the bipartite graph. 
Ren et al. [8] proposed to assign weights to data objects 

with regard to how difficult it is to cluster them and 

presented three graph partitioning algorithms based on the 

weighted object scheme, that is, weighted-object meta 

clustering (WOMC), weighted-object similarity partition 

(WOSP) clustering, and weighted-object hybrid bipartite 

(WOHB) graph partition clustering. Despite the significant 

success, there are still two limitations to most of the 

existing ensemble clustering approaches. First, the existing 

approaches mostly overlook the problem of uncertain links 

which may mislead the consensus process. Second, most 
of them lack the ability to incorporate global structure 

information to refine local links accurately and efficiently. 

The existing approach addresses the issue of uncertain 

links in an effective and efficient manner. To identify the 

uncertain links by the ENS strategy and build a sparse 

graph with a small number of probably reliable links. The 

empirical study shows the advantage of using only a small 

number of probably reliable links rather than all graph 

links regardless of their reliability. The incorporate global 

information to construct more accurate local links by 

exploiting the random walk trajectories. The random 

walkers driven by a new probability transition matrix are 
utilized to explore the graph structure. A dense similarity 

measure is further derived from the sparse graph K-ENG 

using probability trajectories of the random walkers. 

uncertain links in a locally adaptive manner and construct 

a sparse graph with a small number of probably reliable 

links. It has been shown that the use of a small number of 

probably reliable links can lead to significantly better 

clustering‟s than using all graph links regardless of their 

reliability. 
 

Researchers have investigated how to combine clustering 

ensembles with subspace clustering in an effort to address 
both the ill-posed nature of clustering and the curse-of 

dimensionality in high dimensional spaces. A subspace 

clustering is a collection of weighted clusters, where each 

cluster has a weight vector representing the relevance of 

features for that cluster. In a subspace clustering ensemble, 

the consensus function makes use of both the clusters and 

the weight vectors provided by the base subspace 

clustering. Work has also been done to evaluate the 

relevance of each base clustering (and assign weights 

accordingly), in an effort to improve the final consensus 

clustering. To the best of our knowledge, no previous 
work has investigated how to use weights associated to 

objects within the clustering ensemble framework. 
 

Temporal data clustering provides underpinning 

techniques for discovering the intrinsic structure and 

condensing information over temporal data. In this paper, 

we present a temporal data clustering framework via a 

weighted clustering ensemble of multiple partitions 

produced by initial clustering analysis on different 
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temporal data representations. In our approach, we 

propose a weighted consensus function guided by 

clustering validation criteria to reconcile initial partitions 

to candidate consensus partitions from different 

perspectives and then introduce an agreement function to 
further reconcile those candidate consensus partitions to a 

final partition. As a result, the exiting weighted clustering 

ensemble algorithm provides an effective enabling 

technique for the joint use of different representations, 

which cuts the information loss in a single representation 

and exploits various information sources underlying 

temporal data. In addition, our approach tends to capture 

the intrinsic structure of a data set, e.g., the number of 

clusters.  
 

Laplacian matrix and calls a sparse Eigen solver. Several 

methods are available for scarifying the similarity matrix. 
A sparse representation effectively handles the memory 

bottleneck, but some scarification schemes still require 

calculating all elements of the similarity matrix. Another 

popular approach to speed up spectral clustering is by 

using a dense sub-matrix of the similarity matrix. In 

particular, The Nyström approximation to avoid 

calculating the whole similarity matrix; this approach 

trades accurate similarity values for shortened 

computational time.  In another work, propose a method 

that does not use eigenvectors, but they assume the 

availability of the similarity matrix.  The existing   work, 
the developing a parallel spectral clustering package on 

distributed environments. We begin by analysing 1) the 

traditional method of scarifying the similarity matrix and 

2) the Nystrom approximation. While the scarification 

approach may be more computationally expensive, our 

experimental results indicate that it may yield a slightly 

better solution. 

 

III. PROPOSED APPROACH 

 

Given a dataset which contains n data points x={X =
{x1 , x2 … . . xn},xi ∈ Rl. Construct an undirected weighted 

graph G = (V,E,W). Treat each data point as a vertex V in 

graph G. Each edge E between vertices (xi ,x j ) has a 

similarity value W. Then the clustering problem can be 

transformed into a graph partitioning problem on graph G. 
The optimal partitioning criteria based on graph theory is 

maximizing the internal similarity of the two divided sub-

graphs, and minimizing the similarity between sub-graphs. 

Most spectral clustering algorithms search clusters 

utilizing the eigenvectors of similarity matrix. The 

similarity matrix W ∈ Rn×n of spectral clustering 

algorithm is composed of wij, which is usually represented 

by Gaussian kernel function: 
 

wij = exp −
d2(xi , xj)

2σ2
    (1) 

 

Where d xi , xj the Euclidean distance between point  xi 

and xj  ;  σ is the scaling parameter which controls how 

rapidly the similarity wij  falls off with d xi , xj .  

In  graph   G ,  the  sum  of  the  weights  of  the  edges   

connected to vertex  i , is defined as the degree of  vertex  i 

,  which can be represented by  di: 
 

di =  wij

n

j=1

      (2) 

 

In graph cut methods, seeking the optimal solution of   the 

objective function is often NP-hard.  With the help of 

spectral method, the original problem can be solved in 

polynomial   time   by   relaxing   the   original   discrete 

optimization problem to the real domain.  For graph 

partitioning, a point can be considered part belonging to 

subset A and part belonging to subset B, rather than 
strictly belongs to one cluster.  It can be proved that the 

classification information of vertices is contained in the 

eigenvalues and eigenvectors of graph Laplacian matrix. 

and it can get good clustering results. 

 
Step 1 Create similarity matrix and Laplacian matrix to 

describe the samples; 

Step 2 Calculate the eigenvalues of the Laplacian matrix, 

and choose appropriate eigenvalues and their 

corresponding eigenvectors to create the space Rk ; 

1) 2-way: the initial samples are distributed into one-

dimensional space (k=1). 

2) k-way: the initial samples are distributed into space Rk 

and we can obtain matrix Y which consists of k orthogonal 

vectors. 

Step 3 Treat Y as a new representation space of data 
samples, and then cluster the data samples according to the 

new representation space. 

1) 2-way: optimize the objective function in the one-

dimensional space, and then repeatedly partition the 

obtained sub-graphs. 

2) k-way: use a typical clustering algorithm such as 

kmeans to deal with the eigenvectors in Rk . 

 

A. Local Scaling 

The scaling parameter is some measure of when two 

points are considered similar. This provides an intuitive 
way for selecting possible values for σ. The selection of σ 

is commonly done manually. The selecting σ 

automatically by running their clustering algorithm 

repeatedly for a number of values of σ and selecting the 

one which provides least distorted clusters of the rows of 

Y. This increases significantly the computation time. 

Additionally, the range of values to be tested still has to be 

set manually. Moreover, when the input data includes 

clusters with different local statistics there may not be a 

single value of σ that works well for all the data. When the 

data contains multiple scales, even using the optimal σ 

fails to provide good clustering. 
 

Instead of selecting a single scaling parameter σ propose 

to calculate a local scaling parameter σi for each data point 

si. The distance from si to sj as „seen‟ by si is d(si, sj)/σi 

while the converse is d(sj, si)/σj . Therefore the square 
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distance d2 of the earlier papers may be generalized as 

d(si, sj)d(sj, si)/σiσj = d2(si, sj)/σiσj The affinity between 

a pair of points can thus be written as: 

 

Aij
 = exp 

−d2 xi , yi 

σiσj

      (3) 

 
Using a specific scaling parameter for each point allows 

self-tuning of the point-to-point distances according to the 

local statistics of the neighbourhoods surrounding points i 

and j. where sK is the K‟th neighbor of point si. The 

selection of K is independent of scale and is a function of 

the data dimension of the embedding space. Nevertheless, 

in all the experiments (both on synthetic data and on 

images) we used a single value of K = 7, which gave good 

results even for high-dimensional data (the experiments 

with high-dimensional data were left out due to lack of 

space). 
 

B. Estimating Weight based Clusters 

Having defined a scheme to set the scale parameter 

automatically it is left with one more free parameter: the 

number of clusters. This parameter is usually set manually 

and not much research has been done as to how might one 

set it automatically. It can approach to discovering the 

number of clusters. The suggested scheme turns out to 

lead to a new spatial clustering algorithm. Examining the 

eigenvalues of our locally scaled matrix, corresponding to 

clean data-sets, indeed shows that the multiplicity of 
eigenvalue 1 equals the number of groups. However, if the 

groups are not clearly separated, once noise is introduced, 

the values start to deviate from 1, thus the criterion of 

choice becomes tricky. 

 

Following this objective, propose a weight assignment to 

objects using the results of all base clustering‟s, and then 

embed the weights into the successive consensus 

clustering process. Similar to boosting, points that are hard 

to cluster receive larger weights, while easy-to-cluster 

points are given smaller weights. The difference is that 

boosting is an iterative process, while our weight 
assignment scheme is performed in one-shot. The details 

are given below. the level of uncertainty in clustering two 

points x𝑖 and x𝑗 as 

 

confusion xi , xj = Aij
  1 − Aij

      (4) 

 

The confusion index reaches its maximum of 0.25 when 

Aij
  = 0.5, and its minimum of 0 when Aij

  = 0 or 𝐴𝑖𝑗 = 1. 

Here uses this confusion measure to define the weight 

associated with each object as follows: 

 

wi
′ =

4

n
 confusion xi , xj      (5)

n

j=1

 

 

The normalization factor 4 𝑛 is used to guarantee that 𝑤′ 𝑖 
∈ [0, 1].  

To avoid a value of 0 for a weight, which can lead to 

instability, add a smoothing term 

wi =
wi

′ + e

1 + e
      (6) 

 

where 𝑒 is a small positive number (𝑒 = 0.01 in the 

experiments). As a result, 𝑤𝑖 ∈ (0, 1]. A large 𝑤𝑖 value 

means that confusion (x𝑖, x𝑗) is large for different x𝑗 
values. As such it 

 

C. Weighted Spectral Cluster Algorithm 

The proposed method for estimating the number of groups 

automatically has two desirable by-products: (i) After 

aligning with the canonical coordinate system, one can use 

non-maximum suppression on the rows of Z, thus 
eliminating the final iterative k-means process, which 

often requires around 100 iterations and depends highly on 

its initialization. (ii) Since the final clustering can be 

conducted by non-maximum suppression, here obtain 

clustering results for all the inspected group numbers at a 

tiny additional cost. When the data is highly noisy, one 

can still employ k-means, or better, EM, to cluster the 

rows of Z. 

 

Algorithm:  

Given a set of points S = {s1, . . . , sn} in Rl that we want 

to cluster: 
 

1. Compute the local scale σi for each point si ∈ S using 

Eq. (1). 

2. Form the locally scaled affinity matrix Aˆ ∈ Rn×n 

where Aˆij is defined according to Eq. (1) for i = j and Aˆii 

= 0. 

3. Define D to be a diagonal matrix and construct the 

normalized affinity matrix L = D−1/2AˆD−1/2. using Eq. 

(3) 

4. Find x1, . . ., xC the C largest eigenvectors of L and 

form the matrix X =[x1, . . . , xC] ∈ Rn×C, where C is the 

largest possible group number. 

5. Recover the rotation R which best aligns X‟s columns 

with the canonical coordinate system using the 

incremental gradient descent scheme using Eq. (4) 

6. Grade the cost of the alignment for each group number, 

up to C, according to Eq. (5). 

7. Set the final group number Cbest to be the largest group 

number with minimal alignment cost. using Eq. (6) 

8. Take the alignment result Z of the top Cbest 

eigenvectors and assign the original point si to cluster c if 
and only if maxj(Z2 ij) = Z2 ic. 

9. If highly noisy data, use the previous step result to 

initialize weight, clustering on the rows of Z. 

 

The tested the quality of this algorithm on real data. The 

number of groups and the corresponding segmentation 

were obtained automatically. In this case same quality of 

results were obtained using non-scaled affinities, however, 

this required manual setting of both σ (different values for 

different images) and the number of groups, whereas our 

result required no parameter settings. 
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IV. EXPERIMENT RESULTS 

 

Weight based spectral Cluster proposed an automated 

spectral clustering algorithm based on these ideas: it 

computes automatically the scale and the number of 
groups and it can handle multi-scale data which are 

problematic for previous approaches. the normalized 

mutual information (NMI) to evaluate the quality of the 

consensus clustering‟s, which provides a sound indication 

of the shared information between two clustering‟s. Note 

that a higher NMI indicates a better test clustering. 

 

TABLE I AVERAGE RATIOPL VARYING PARAMETERS 

 

K 1 2 3 

Ensemble Clustering 3.2 4.0 5.9 

Weighted Spectral 

Cluster 

6.8 7.1 8.0 

 

 
Fig 1 Compare the Avg RatioPL existing with proposed 

algorithm. 

 

TABLE III AVERAGE PERFORMANCE IN TERMS OF NMI 

 

 True-k 

K 1 2 3 

Ensemble Clustering 0.513 0.411 0.376 

Weighted Spectral 
Cluster 

0.629 0.609 0.577 

 

 
Fig 2 Compare the NMI score existing with proposed 

algorithm. 

The existing PTA and PTGP metods and the baseline 

methods 100 times on each dataset. But in proposed 

system take minimum time to run the image dataset. 

 

TABLE IIIII EXECUTION TIME OF DIFFERENT CLUSTERING 

APPROACHES 

 

 Datasize 

K 200 400 600 

Ensemble Clustering 8.687 12.856 16.983 

Weighted Spectral 

Cluster 

5.432 7.654 9.473 

 

 
Fig. 3. Execution time of different clustering approaches 

as the data size varies. 
 

Extensive experiments have been conducted on ten real-

world datasets. The experimental results show that our 

approach significantly outperforms the state-of-the-art 

approaches in both clustering accuracy and efficiency. 

 

V. CONCLUSION 

 

The proposed an automated spectral clustering algorithm 

based on these ideas: it computes automatically the large 

data and the number of groups and it can handle multi-
scale data which are difficult for previous ensample 

approaches. Experimental results on multiple real-world 

image datasets demonstrate the effectiveness and 

efficiency of our approach. In particular, given a cluster, 

investigate its uncertainty by considering how the objects 

inside this cluster are grouped in the multiple base 

clustering‟s. Based on cluster uncertainty estimation, a 

spectral cluster index (SCI) is then presented to measure 

the reliability of clusters. The proposed algorithm the 

crowd of diverse clusters in the spectral can provide an 

effective indication for evaluating each individual cluster 

in the subspace. By evaluating and weighting the clusters 
in the spectral via the SCI measure, the present the concept 

of locally weighted co-association matrix, which 

incorporates local adaptively into the conventional co-

association matrix and serves as a summary for the 

spectral of diverse clusters. Finally, to achieve the final 

clustering result, propose novel locally weighted Ng-

Jordan-Weiss (WNJW) Algorithm, respectively, with the 
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diversity of clusters exploited and the local weighting 

strategy incorporated. 
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